On infinite uniquely partitionable graphs and graph properties of finite character

نویسندگان

  • Jozef Bucko
  • Peter Mihók
چکیده

A graph property is any nonempty isomorphism-closed class of simple (finite or infinite) graphs. A graph property P is of finite character if a graph G has a property P if and only if every finite induced subgraph of G has a property P . Let P1,P2, . . . ,Pn be graph properties of finite character, a graph G is said to be (uniquely) (P1,P2, . . . ,Pn)partitionable if there is an (exactly one) partition {V1, V2, . . . , Vn} of V (G) such that G[Vi] ∈ Pi for i = 1, 2, . . . , n. Let us denote by R = P1◦P2◦ · · · ◦Pn the class of all (P1,P2, . . . ,Pn)-partitionable graphs. A property R = P1◦P2◦ · · · ◦Pn, n ≥ 2 is said to be reducible. We prove that any reducible additive graph property R of finite character has a uniquely (P1,P2, . . . ,Pn)-partitionable countable generating graph. We also prove that for a reducible additive hereditary graph property R of finite character there exists a weakly universal countable graph if and only if each property Pi has a weakly universal graph. 242 J. Bucko and P. Mihók

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniquely partitionable planar graphs with respect to properties having a forbidden tree

Let P1, P2 be graph properties. A vertex (P1,P2)-partition of a graph G is a partition {V1, V2} of V (G) such that for i = 1, 2 the induced subgraph G[Vi] has the property Pi. A property R = P1◦P2 is defined to be the set of all graphs having a vertex (P1,P2)-partition. A graph G ∈ P1◦P2 is said to be uniquely (P1,P2)-partitionable if G has exactly one vertex (P1,P2)-partition. In this note, we...

متن کامل

On uniquely partitionable planar graphs

Let ~1,22 . . . . . ~,; n/>2 be any properties of graphs. A vertex (~L, ~2 . . . . . J~,,)-partition of a graph G is a partition (V1, l~,...,/7,,) of V(G) such that for each i = 1,2 . . . . . n the induced subgraph G[Vi] has the property ~i. A graph G is said to be uniquely (~1,~2 . . . . . ~,)-partitionable if G has unique vertex (2~1, ~2 , . . . , ~,)-partition. In the present paper we invest...

متن کامل

Remarks on the existence of uniquely partitionable planar graphs

We consider the problem of the existence of uniquely partitionable planar graphs. We survey some recent results and we prove the nonexistence of uniquely (D1,D1)-partitionable planar graphs with respect to the property D1 ”to be a forest”.

متن کامل

Criteria of the existence of uniquely partionable graphs with respect to additive induced-hereditary properties

Let P1,P2, . . . ,Pn be graph properties, a graph G is said to be uniquely (P1,P2, . . . ,Pn)-partitionable if there is exactly one (unordered) partition {V1, V2, . . . , Vn} of V (G) such that G[Vi] ∈ Pi for i = 1, 2, . . . , n. We prove that for additive and induced-hereditary properties uniquely (P1,P2, . . . ,Pn)-partitionable graphs exist if and 32 I. Broere, J. Bucko and P. Mihók only if ...

متن کامل

The order of uniquely partitionable graphs

Let P1, . . . ,Pn be properties of graphs. A (P1, . . . ,Pn)-partition of a graph G is a partition {V1, . . . , Vn} of V (G) such that, for each i = 1, . . . , n, the subgraph of G induced by Vi has property Pi. If a graph G has a unique (P1, . . . ,Pn)-partition we say it is uniquely (P1, . . . ,Pn)partitionable. We establish best lower bounds for the order of uniquely (P1, . . . ,Pn)-partitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2009